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Abstract

Magnetohydrodynamic instabilities at the metal-bath interface in aluminum reduction cells is an important and not
fully understood topic. To simulate the two-fluid three-dimensional unstationary flow subject to a background magnetic
field, a level set approach is proposed. It features a formulation in terms of the magnetic vector potential to avoid a numer-
ical growth of the divergence of the magnetic field. The same exact projection scheme (with staggered grids) is used for both
the velocity field and the magnetic vector potential. Test simulations show that the overall method behaves well in purely
hydrodynamic as well as in fully magnetohydrodynamic regimes, in both cases with a single fluid and with two fluids. We
also simulate with our technique the metal pad roll instability and trace the behavior of coupled interfacial modes.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Industrial production of aluminum is achieved by means of electrolysis of alumina, an aluminum oxide [1].
The latter is dissolved into a thin layer of electrolytic bath, lying on top of a liquid aluminum layer of 8.6%
higher density inside a rectangular cell (see Fig. 1). The horizontal dimensions of the cell are around
10 m · 4 m, while each liquid layer is only about 20 cm thick. Since the electrolysis current, of 400 kA in mod-
ern cells, is carried out downward through the bath, strong Joule heating occurs, maintaining the temperature
of the system around 960 �C, that is, well over the fusion point of aluminum. Such aluminum reduction cells
are lined up into a smelter and connected together in series by bus bars. A background magnetic field is there-
fore induced over the cells; its intensity and orientation depend on the placement of the bus bars.

This two-liquid layer system has been observed to be subject to interfacial instabilities driven by magnetic
forces [2–5]. Since the bath is 104 times more resistive than liquid aluminum, the electric current, which tends
to flow through the least resistive paths, is very sensitive to the motion of the aluminum–bath interface. Thus,
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Fig. 1. Vertical cut of a Hall–Héroult cell.
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the vertical electrolysis current is diverted horizontally upon a displacement of the interface, and a magnetic
force arises from the interaction between these new current components and the vertical component of the
background magnetic field. This is the basis of the instability mechanism of a rotating wave known as the
metal pad roll, that has been extensively studied theoretically [6–9] and proven to follow from the coupling
between different oscillation modes by the magnetic force.

Owing to the high temperature inside the cell, experimental data are hardly obtained and are limited, to our
knowledge, to the measurement of the erosion of iron rods by the flow [1], of radioactive tracers and of anodic
currents intensity [10]. So far, a direct observation of the interface motion is impossible. Thus, numerical sim-
ulation turns out to be a useful tool to investigate magnetohydrodynamic (MHD) instabilities in aluminum
reduction cells.

Various two-dimensional models resulting from more or less strong approximations have been used for
numerical computations [11]. However, only a few direct three-dimensional simulations have been carried
out in the past, by Potočnik [12] using the finite elements industrial code ESTER/PHOENICS, and by Ger-
beau and coworkers [13], who developed their own, mathematically rigorous, arbitrary Lagrangian–Eulerian
(ALE) numerical method. This consists in a finite elements-like grid discretization. It requires the interface not
to be altered by strong topological changes, but has the advantage of being able to handle strong discontinu-
ities at the interface.

Like the ALE approach, the model we propose in this study relies on as little simplifying assumptions as
possible. We first discuss the equations that model the physics in a Hall–Héroult cell. Next, we explain the way
the interface is treated using a level set method. Then we give the details of the space–time discretization of our
model. At last, a few numerical tests with our code are reported, as well as a simulation of the metal pad roll.

2. Physical model

We focus on the physical mechanisms that are independent of the geometrical peculiarities of the cell, such
as the inclined ledges near the bottom of the cell and the open channels between the anodes [3,14]. Thus, we
consider the simplified geometry depicted in Fig. 2: a single anode spanning over all the top of the cell, with
purely vertical walls. During the reduction reaction, the oxygen from the alumina combines to the carbon
Fig. 2. Simplified geometry.



D. Munger, A. Vincent / Journal of Computational Physics 217 (2006) 295–311 297
from the anodes to form carbon oxides. Our model does not account for those, unlike in the model of Potoč-
nik [12], nor for the frozen bath that gathers on the ledges. We rather consider insulating vertical walls.

We solve the three-dimensional unsteady incompressible MHD equations of transport, using a formulation
in terms of the magnetic vector potential.

2.1. Mass and momentum transport

Momentum transport is modeled by the Navier–Stokes equation [15], comprising buoyancy and magnetic
effects in the last two terms:
oq~v
ot
¼ �~rp �~r � ðq~v~v� 2qmDÞ þ~F g þ~F m; ð1Þ
where~v is the flow velocity and q is the mass density. The first term on the right-hand side is the gradient of
total pressure, including thermodynamic, hydrostatic and magnetostatic pressures, and is determined by the
incompressibility condition
~r �~v ¼ 0
on mass conservation. Within the parentheses of Eq. (1) are the inertia and viscous terms respectively, where
D ¼ 1

2
½~r~vþ ð~r~vÞT� is the strain rate tensor and m is the kinematic viscosity.

The total gravitational force density is �qg~ez, where g is the gravitational acceleration. But, defining q0(z)
as the equilibrium density profile, the total force is split into an hydrostatic pressure gradient ~rð�

R
q0g dzÞ

and the buoyancy force density
~F g ¼ �ðq� q0Þg~ez; ð2Þ

which is null at equilibrium. When the system is static, the interface is flat and stands at, say, z = Hal; then q0 is
set to the liquid metal density for z < Hal and to the bath density otherwise.

We apply a similar treatment to the total magnetic force density ~J �~B, where ~J and ~B denote the electric
current and magnetic flux densities, respectively. Due to its complexity, this task deserves its own section.

2.2. Magnetic force

Our aim here is to decompose the magnetic force into components with different physical meanings, in
order to make some simplification, but also to allow a better investigation of the physical processes.

We first begin with splitting the electric current density into the imposed vertical current ~J 0 ¼ �J 0~ez and a
disturbance~j from equilibrium, each of them inducing some magnetic flux, with corresponding densities ~B0

and ~b. Then we add the background magnetic induction due to remote currents ~Bbg, yet unspecified, so that
~B ¼ ~Bbg þ~B0 þ~b. ð3Þ

Next, we have to guess the form of~B0. Though a rigorous analysis would require computing it from Biot–Sav-
art’s law, this would lead to a needlessly complex solution. So, following [4,5], we set ~B0 to a simpler linear
expression such that ~r�~B0 ¼ l0

~J 0 according to Ampère’s law:
~B0 ¼
l0J 0

2
y � Ly

2

� �
~ex � x� Lx

2

� �
~ey

� �
.

This field, nevertheless, may not be induced solely by the current density ~J 0. Indeed, the difference between
this expression and the exact solution to Biot–Savart’s law can be regarded as a residual part of the back-
ground field, which does not appear in the original definition of ~Bbg. Next, we require that ~B0 induce no
motion at equilibrium [4], but it is readily verified that ~J 0 �~B0 can be written as the gradient of a quantity
that we shall call the magnetostatic pressure. The latter can be obtained from direct calculations, but needs
not be detailed here. It should be noted that the vertical component of the background field cannot gen-
erate motion at equilibrium. Nevertheless, it has to be irrotational so that it is not associated with local
currents.
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On account of the previous discussion, we consider the following expression for the effective magnetic force:
~F m ¼~J 0 � ð~Bbg þ~bÞ þ~j�~B ð4Þ

with ~B given by Eq. (3), and under the constraint ~r�~Bbg ¼ 0.

2.3. Magnetic field evolution

Under the assumption that no high-frequency electromagnetic waves would stand in a sufficiently conduct-
ing medium, the displacement currents can be neglected in Ampère’s law [16] and this leads to the magneto-
hydrodynamic approximation:
~r�~B ffi l0
~J ; ð5Þ
where l0 is the magnetic permeability of void (nearly that of liquid aluminum). It can be further shown that,
under the same assumptions, the electric force can also be neglected [16] in the Navier–Stokes equation, which
results in Eq. (1). The current disturbance in Eq. (4) is computed, according to Eq. (5), as~j ¼ ~r�~b=l0.

Combining Eq. (5) with Faraday’s and Ohm’s laws to eliminate the electric field yields the following evo-
lution equation for the magnetic induction field:
o~B
ot
¼ ~r� ð~v�~B� g~r�~BÞ. ð6Þ
The first term on the right-hand side stands for transport and stretching by the flow, while the second one
basically corresponds to magnetic diffusion by Joule heating, with its coefficient defined as the magnetic dif-
fusivity g = 1/l0r. Some additional meaning hidden into this term will be revealed in the following section.

Besides, the magnetic field must remain (from Maxwell’s equations) solenoidal:
~r �~B ¼ 0; ð7Þ

which of course excludes magnetic monopoles. It is straightforward to show, by taking the divergence of Eq.
(6), that ~B remains divergence-free if ~Bðt ¼ 0Þ satisfies Eq. (7). However, the numerical resolution of Eq. (6)
does not preserve this property in general. This is indeed a well-known problem commonly dealt with by using
a projection step [17], which turned out to be inefficient in our case [18], rather leading the flow to an obviously
non-physical regime. To overcome this difficulty, divergence cleaning algorithms [19,20] have been proposed.
Here, we chose instead to replace the magnetic field with its vector potential ~A, thus ensuring ~r �~B ¼ 0 implic-
itly [21].

2.4. Magnetic vector potential formulation

In virtue of Helmholtz’s theorem, the magnetic vector potential ~a is uniquely defined by
~r�~a ¼~b

together with a gauge condition, i.e. a constraint on ~r �~a, and suitable boundary conditions. Setting ~r �~a ¼ 0,
an evolution equation for the potential ~a is obtained:
o~a
ot
¼ �~ruþ~v� ð~Bbg þ~B0 þ ~r�~aÞ þ gr2~a� ðg� g0Þl0

~J 0; ð8Þ
where u, the time-dependent part of the electric potential that adjusts to make the current disturbance form
closed loops, is determined by the gauge condition. The magnetic diffusivity profile at equilibrium g0(z), con-
structed in the same manner as q0(z) in Section 2.1, is included so that o~a=ot ¼ 0 at equilibrium when~v ¼ 0
and ~a ¼ 0. It is readily verified that taking the curl of this equation leads back to Eq. (6).

Observing that
r2~a ¼ �l0
~j; ð9Þ
it is easily understood that the third term in Eq. (8) corresponds to the diffusion of the field induced by local
current disturbances. The last term in Eq. (8) deserves some explanation. As opposed to the third one, it is
associated to the undisturbed electrolysis current ~J 0, and furthermore it is null at equilibrium. Thus, it can
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only act through changes of the gradient of electrical conductivity that appear upon a displacement of the alu-
minum–bath interface. Only the rotational part of this term is physically meaningful; it symbolically writes
down as:
Table
Chara

Time

Magne
Buoya

Magne

Turno
Viscou
l0J 0 ðg� g0Þ~ez �r�2 o

oz
~rðg� g0Þ

� �
.

Its contribution to the current can be obtained using Eq. (9):
o~j
ot
¼ � � � � J 0r2

hðg� g0Þ~ez þ J 0

o

oz
~rhðg� g0Þ; ð10Þ
where ~rh is the horizontal projection of the gradient operator, and r2
h ¼ ~rh � ~rh. This expression is diver-

gence-free, so the diverted currents form closed loops.
Before pushing this analysis any further, we emphasize that even if, at first sight, it does not make sense to take

derivatives across the discontinuity at the interface, we are using, as described in Section 3, a level set method in
which the jump in conductivity is made smooth. From now on, all discontinuities shall be assumed to be smooth.
To illustrate the behavior of the right-hand side of Eq. (10), we consider a bump into the interface, i.e. a zone
where the bath is replaced with aluminum, which appears as a hole in the (smooth) function g � g0. This means
thatr2

hðg� g0Þ > 0, and from the z-component of Eq. (10), we see that the diverted currents flow down through
the bump, which is in agreement with the fact that the current prefers the least resistive paths.

To summarize, the last term of Eq. (8) is at the origin of the current diversion by displacements of the alu-
minum–bath interface. Second-order effects are relayed to the gr2~a term. A last remark should be made about
the fact that this vector potential formulation has the drawback of involving higher-order derivatives in the
equations. But this is not a problem here, since ~a remains pretty smooth because of the strong magnetic
diffusion.

2.5. Scaling

The physical variables are made non-dimensional using the following units:

� the magnetic force characteristic propagation time T0 ” sm = 5.96 s as the unit time, defined in Table 1;
� the vertical anode–cathode distance L0 ” Lz = 38.0 cm as the unit length;
� the corresponding speed U0 ” L0/T0 = 6.37 cm/s at the unit velocity;
� the density qel = 2090 kg/m3 of the electrolytic bath as the unit density;
� the intensity J0 = 400 kA of the imposed current as the unit electric current;
� the corresponding magnitude l0J0L0 = 3.27 mT of the induced field as the unit magnetic induction, imply-

ing (l0J0L0) · L0U0 = 7.92 mV for the electric potential.

This choice results in the following non-dimensional forms of Eqs. (1) and (8):
oq~v
ot
¼ �~rp � ~r � q~v~v� 2qD

Re

� �
�
~F g

Fr2
þ~F m; ð11Þ

o~a
ot
¼ �~ruþ~v� ð~Bbg þ~B0 þ ~r�~aÞ þ

1

Rm
r2~aþ 1

Rm
� 1

Rm0

� �
~ez; ð12Þ
1
cteristic times

Symbol Definition

tic diffusion sg L2
0=g

ncy sg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qelL0=Dqg

p
tic force sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qel=l0J 2

0

q
ver sU L0/U0

s diffusion sl qelL
2
0=l
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where ~F g and ~F m are given by Eqs. (2) and (4), replacing the variables with their non-dimensional homologues.
Characteristic times and non-dimensional numbers are shown in Tables 1 and 2. The Reynolds number com-
puted from the fluid’s viscosity would be of the order of 104, but an estimation of the turbulent transport coef-
ficient [2] implies that our corresponding Reynolds number is rather of the order of 102. It can be regarded as a
turbulent Reynolds number and thus roughly accounts for non-resolved turbulent scales.

2.6. Boundary conditions

Since the discontinuities in the transport coefficients of Eqs. (11) and (12) are assumed to be smooth (see
Section 3), the boundary conditions at the interface need not be explicit. However, on the boundary oX of
the simulation domain X corresponding to the inside of the cell, the following conditions hold.

Velocity field. Neglecting the inclined ledges, the frozen bath and the carbon walls roughness, we have no-
slip, solid boundaries:
~vjoX ¼ 0.

Pressure. Since the boundary conditions on~en �~v are imposed while solving for the viscous term (see Section
4.6), before performing projection (see Section 4.4), we want the pressure gradient to have no effect on the
normal component of~v:

~en � ~rpjoX ¼ 0.

Magnetic vector potential. As stated previously, we assume the vertical walls to be insulating and the elec-
trolysis current to be imposed at horizontal walls, so that the current disturbance cannot penetrate the
boundaries:

~en �~jjoX ¼ 0)~en � ð~r�~bÞjoX ¼ 0. ð13Þ
Then, we consider the ferromagnetic shell enclosing the cell, assuming that the carbon wall between the
liquid boundary and this shell is thin enough. The continuity of the tangential magnetic field approximates
as ~en �~Bshell=lshell ’~en �~B=l0 on oX, where l0/lshell� 1, since the shell is ferromagnetic. Therefore, the
tangential components of the magnetic field are limited in magnitude on the liquids side of the wall. While
~Bbg is the part of the external field not shielded by the shell, it is reasonable to assume that the tangential
components of the disturbance~b remain significantly weaker than those of~Bbg, and regarding Eq. (13), take
a constant value on the boundary, hence we set:
Table
Non-d

Numb

Interac
Froud
Magne

Reyno
~en �~bjoX ¼ 0) ð~en � ~rÞð~en �~bÞjoX ¼ 0. ð14Þ

The second condition follows from ~r �~b ¼ 0.
Recalling that ~r �~a ¼ 0, we see that the conditions (14) can be satisfied by requiring
~en �~ajoX ¼ 0 and ð~en � ~rÞð~en �~aÞjoX ¼ 0. ð15Þ
Electric potential. Using a similar argument as for the pressure, we observe that the boundary conditions on
~en �~a are imposed while solving for the diffusion term and we set:

~en � ~rujoX ¼ 0.
2
imensional numbers

er Symbol Definition Value

tion parameter N s2
U=s

2
m 1

e Fr sg/sU 0.11
tic Reynolds Rm sg/sU 9.1 · 10�2 (aluminum)

9.1 · 10�6 (bath)
lds Re sl/sU 500
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3. Level set method

In order to track the interface between the two liquids and to account for their different transport coeffi-
cients, we advect a function / whose zero-level implicitly defines the location of the interface:
o/
ot
¼ �~r � ð~v/Þ; ð16Þ
thus passively propagating the zero-level along the flow. This is known as a level set method [22].
As shown in Fig. 3, the level set function / must be positive in one fluid and negative in the other, so that

any fluid-dependent physical property, such as the mass density q, can be obtained at some given point P in
the following manner:
qðP Þ ¼ H �ð/ðPÞÞqal þ ½1� H �ð/ðP ÞÞ�qel;
where qal and qel are the mass densities of aluminum and electrolytic bath, respectively. H�(/) is a smooth
approximate to Heaviside’s step function H0(/), and it is defined as [23]:
H �ð/Þ ¼
1 if / > �;

0 if / < ��;
1
2

1þ /
�
þ 1

p sin p/
�

� �	 

otherwise,

8><
>: ð17Þ
where the parameter � stands as an effective interface width, as shown in Fig. 4. Here, we take this width to be
proportional to the vertical grid step (Dz), since the interface is mainly horizontal. We observed, on an empir-
ical basis, that a value of � = 1.5Dz keeps the scheme stable, given the magnitude of the discontinuities.

In order for the interface width � from Eq. (17) to make sense, H�(/) must run exactly from value 0, at dis-
tance � from the interface on one side, to value 1, at the same distance on the other side. That is, / must run
from �� to � on the same range, i.e. / has to be a signed distance function. This means that, in addition to
being positive on one side of the interface and negative on the other, it must satisfy
k~r/k ¼ 1. ð18Þ

This can be achieved thanks to a redistancing algorithm [23], which resets any level set function / as a signed
distance function, with the side effect of improving numerical mass conservation by eliminating steep gradients
of / near the interface. Thus, after each time integration step of Eq. (16), the level set function is reset to a
signed distance function. First, /0 is set to the value of / before redistancing and then the following equation
is solved:
o/
os
¼Lð/0;/Þ; ð19Þ
where s is some artificial time and
Lð/0;/Þ 	 ð1� k~r/kÞsign�ð/0Þ. ð20Þ

Eq. (19) reaches its steady-state when Eq. (18) is satisfied. The sign function, whose purpose is to preserve the
sign of /0 without changing its zero-level, is defined as
Fig. 3. Level set method.
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sign�ðxÞ ¼ 2H �ðxÞ � 1.
The gradient operator in Eq. (20) is discretized using a first-order1 upwind scheme [24]:
o/
oxj
’

Dþj / if sign�ð/0ÞDþj / < 0 and sign�ð/0ÞðDþj þ D�j Þ/ < 0;

D�j / if sign�ð/0ÞD�j / > 0 and sign�ð/0ÞðDþj þ D�j Þ/ > 0;

0 if sign�ð/0ÞDþj / > 0 and sign�ð/0ÞD�j / < 0;

8><
>:
where Dþj and D�j are the standard forward and backward first-order finite differences along axis xj. The use of
such a scheme is necessary to preserve the interface’s position as well as to reach the steady-state of Eq. (19). It
has been proved [25] that / can be correctly redistanced within a radius aDx when Eq. (19) is integrated over a
time Ds = aDx. It further has been shown that Ds is a valid time step for integration. Thus, a few iterations are
enough to make / a signed distance function in the neighborhood of the interface, which is indeed the only
domain where Eq. (18) has to be verified. In fact, there is a volume conservation problem inherent to this redis-
tancing technique [25]. For each control volume V, a corrective term must be appended to Eq. (19):
o/
os
¼Lð/0;/Þ þ kf ð/Þ;
where k and f(/) depend on V and have to be defined such that the following constraint be satisfied:
o

os

Z
V

H �ð/ÞdV ¼ 0;
i.e. the volume (of aluminum) enclosed by the interface has to be conserved within the control volume V. Dif-
ferentiating the above equation results in:
Z

V

H 0�ð/Þ
o/
os

dV ¼
Z
V

H 0�ð/Þ½Lð/0;/Þ þ kf ð/Þ�dV ¼ 0.
Thus, an expression for k can be obtained:
k ¼
�
R
V

H 0�ð/0ÞLð/0;/ÞdVR
V

H 0�ð/0Þf ð/ÞdV
. ð21Þ
Then, choosing
f ð/Þ 	 H 0�ð/Þk/k

allows the correction to be made only at the interface and thus preserves Eq. (18) elsewhere: the derivative H 0�
of the smooth Heaviside’s function H� is in fact a smooth approximate of Dirac’s distribution d. So, f(/) and
thus the correction to Eq. (19) are null everywhere but at the interface. Finally, Eq. (21) becomes:
er spatial derivatives in our scheme are discretized at second-order. The purpose of the redistancing process is just to keep the slope
f order unity; it involves no physical process.
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k ¼
�
R
V

H 0�ð/0ÞLð/0;/ÞdVR
V
½H 0�ð/0Þ�

2k~r/0kdV
.

This summarizes the approach proposed by Sussman and Fatemi [25]. For the integrals in the last equation,
we use the same discretization as when dealing with averages (see Section 4.3), but without normalizing by the
volume.

4. Discretization

4.1. Staggered grids

The fields~v; ~a, p, uand / are defined at discrete locations on a fixed regular mesh, whose control volume of
size Dx · Dy · Dz is illustrated in Fig. 5. The velocity and magnetic vector potential fields components are
staggered on the faces of this control volume, while all other quantities are defined in the center. This allows
for an exact projection (see Section 4.4).

4.2. Finite volumes

The momentum conservation Eq. (1) is written in conservative form:
oq~v
ot
¼ Q� ~r �~J ;
where Q is a source (sink) term and ~J is the momentum flux density. Integrating over a control volume V
bounded by the closed surface oV and normalizing by its volume V = DxDyDz yields:
dq~v
dt
¼ Q� 1

V

I
oV

~J � d~a; ð22Þ
where the upper bar � denotes the average.
Since the control volume is rectangular, the surface integral in Eq. (22) reduces to a sum of the face-aver-

aged components of ~J (see Fig. 6):
1

V

I
oV

~J � d~a ¼
X3

k¼1

Jþk � J�k
Dxk

.

Fig. 5. Control volume.



Fig. 6. Finite-volume method (2D cut).
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4.3. Averaging and reconstruction

After time integration of Eq. (22), one has to recover the point values of q~v from q~v. This leads to a recon-
struction process. We define the (independent) averaging operators A1; A2 and A3 along each axis inside the
control volume V, such that
q~v ¼A1A2A3q~v ð23Þ
and, e.g.
Jþ1 ¼A2A3Jþ1 . ð24Þ
Next, we define the corresponding inverse operators R1 ¼A�1
1 , R2 ¼A�1

2 and R3 ¼A�1
3 for reconstruction

of point values. Now, substituting Eqs. (23) and (24) in Eq. (22), then applying 3D reconstruction R1R2R3

results in the following average-free equation:
oq~v
ot
¼ Q�

X3

k¼1

RkðJþk � J�k Þ
Dxk

.

This method avoids some unwanted numerical diffusion from the usual averaging–reconstruction cycle.
Reconstruction is achieved using 3-point stencils derived from Taylor expansions of the averages around
the reconstructed point.
4.4. Projection

To enforce the ~r �~v ¼ 0 and ~r �~a ¼ 0 conditions, we solve for p and u by Hodge–Helmholtz decomposi-
tion, using a projection method with staggered grids. See [26] for a complete description of the method used
and [27] for the treatment of stencils with variable density.
4.5. Time integration

Time integration is achieved using a fully explicit second-order Adams–Bashforth (AB2) scheme for most
terms of Eqs. (11) and (12): f nþ1 ¼ f n þ Dtð3f n

t � f n�1
t Þ=2, where fn denotes the value of the discrete field f at

the nth time step, and ft, the time derivative of f. The first time step is achieved with a forward Euler
scheme. The AB2 scheme is known to be stable and weakly dispersive [28]. It is thus well suitable for sim-
ulating a wave-generating system such as the aluminum reduction cell with interfacial waves. There are,
however, two exceptions to the use of AB2. First, for the viscous term, a second-order semi-implicit
Crank–Nicolson (CN) scheme is used: f nþ1 ¼ f n þ Dtðf n

t þ f nþ1
t Þ=2. Second, since the coefficient of the mag-

netic diffusion term takes a very large value inside the electrolytic bath, it makes no sense to advance it with
an explicit scheme, hence the unconditionally stable first-order backward Euler (BE) scheme has been cho-
sen: f nþ1 ¼ f n þ Dtf nþ1

t .



Fig. 7. Algorithm dependencies.
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4.6. Overall algorithm

The dependencies are illustrated in Fig. 7. The method can be summarized as follows:

(1) Transport of the level set function /.
(2) Redistancing of / about the interface.
(3) Partial transport of the momentum density q~v.
(4) Implicit viscous term solver (GMRES).
(5) Projection of~v into the space of solenoidal fields (GMRES).
(6) Partial transport of ~a (GMRES).
(7) Implicit resolution of the magnetic diffusion term (GMRES).
(8) Projection of ~a into the space of solenoidal fields (GMRES).

We use the PETSc library’s [29] implementation of the generalized minimal residual (GMRES) iterative sol-
ver, preconditioned with a symmetric successive over relaxation (SSOR) factorization.

5. Tests and results

This section discusses some results computed using the numerical method describe above. In the first two
tests, magnetic effects are turned off in order to investigate the hydrodynamic (HD) reliability of the code only.
The last two tests concern MHD aspects.

5.1. Test 1: Single-fluid hydrodynamics. Homogeneous turbulence

In this test, we simulate a forced turbulent single-fluid but incompressible viscous flow inside a cubic box of
size L0, at different resolutions n ” nx = ny = nz, ranging from 30 to 160 grid points along each direction. The
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numerical Reynolds number (as defined in Eq. (11) and Table 2), is Re = 500. Spectral forcing of random ori-
entation is applied to the largest scales, with an energy injection rate kept constant regardless of the resolution.
The following analysis displays the properties of the flow averaged over 25 mean turnover times. Average
kinetic energy spectra (Fig. 8) show that numerically underresolved flows accumulate energy that can not
be dissipated. However, the dissipation tails of the spectra do not change anymore for resolutions larger than
100, as the smallest scales become better resolved. Depending on the resolution, the turbulent Reynolds num-
ber takes different average values (Fig. 9), decreasing from Ret 
 200 and stabilizing around Ret 
 110 for the
highest resolutions. This is in agreement with the spectra shown in Fig. 8. The turbulent Reynolds number is
computed as Ret = u0l0/m, in terms of the rms velocity u0 and the integral scale
Fig. 8.
for diff
l0 ¼ 2p

R
ek=k dkR
ek dk

;

where ek is the spectral energy density at wavelength k. The slight increase of l0 (Fig. 9) is expected for higher
resolutions because the numerical grid viscosity is weaker [30] but it does not change much for n above 120 and
this is also the case for the energy transfer rate � ¼ u3

0=l0 (Fig. 9). The convergence of the physical properties of
the flow for high n reveals that, despite a small residual amount of energy accumulating in the tail of each
spectrum, there are enough grid points to account for all relevant scales. Simulating the whole dissipative
range [31] is not an easy task and it may not be always necessary [32].

5.2. Test 2: Two-fluid hydrodynamics. Pure gravity modes

We now simulate a two-fluid flow but we still do not consider the magnetic effects. The dispersion relation
derived by Sneyd [5] for shallow layers (long waves) reduces, in this case, to the following interfacial gravity
wave dispersion relation:
x ¼ �i
c
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dqgk

qal coth kH al þ qel coth kH el

� c2

4

s
;

where c is a damping factor depending on linear friction terms in both layers, while Hal and Hel refer to the
respective equilibrium depths of aluminum and bath.

In our three-dimensional case, there is no linear friction but rather viscous effects and no-slip boundary
conditions. To keep things simple for purposes of numerical testing, we set the physical viscosity to a value
low enough so that we can assume c = 0 in the above dispersion relation. At initial time in an 8:1-aspect ratio
cell, the velocity field is null and the interface is given the sinusoidal shape of a single mode. Then we compute
the wave frequencies based on the period of the first oscillation, for two different resolutions: nx = 60, nz = 40,
and nx = 80, nz = 80. This is shown in Fig. 10. The relative error for both resolutions remains below 3% for all
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wavenumbers up to k = 8p/Lx. Wavenumbers greater than 8p/Lx are less relevant in the context of long waves
theory, because in such cases, nonlinear effects arise.

5.3. Test 3: Single-fluid MHD. Diffusion along the magnetic field

In this test, we consider the turbulent flow of a single fluid subject to a strong vertical uniform external mag-
netic field. Theory [33] predicts that in such a situation, momentum is expected to diffuse along the magnetic
field lines, so that the vortices elongate and the flow becomes anisotropic. The horizontal layers near the top
and bottom walls become strongly correlated within a characteristic time s2D ¼ qL2

z=rB2
bgL2

x . With our scaling
and definitions from Table 1, this is equivalent to s2D ¼ ðs2

m=sgÞðLz=LxÞ2=b ¼ sm=bRm, where b is the dimen-
sionless magnitude of the background magnetic field, in units as chosen in Section 2.5.

We performed simulations of a large scale decaying random turbulent flow in a cubic box of size L0 with a
background uniform vertical magnetic field given by
Fig. 10
with tw
predict
~Bbg ¼ bl0J 0L0~ez. ð25Þ

The purpose is to compare the horizontal and vertical correlation lengths which we define, respectively, as
lh ¼ 2p

R
e~k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
d3~kR

e~k d3~k
and lz ¼ 2p

R
e~k=kz d3~kR

e~k d3~k
.

Simulations were carried out for three different magnitudes of the background magnetic field Bbg = bl0J0L0.
The behavior of the ratio lh/lz versus the normalized time t/s2D, plotted in Fig. 11, is in agreement with the-
ory [33]: after time s2D, the vortices are spread vertically and lh/lz reaches a steady-state, corresponding to an
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equilibrium between the diffusion of momentum along the magnetic field lines and the restoration of isotropy
by nonlinear inertial effects.

5.4. Test 4: Two-fluid MHD. Metal pad roll

The fourth test regards MHD interfacial gravity waves at low magnetic Reynolds number. This simulta-
neously accounts for all of the previous features. Observations [34] suggest that a uniform vertical background
field has important effects on the flow stability [6,7,9]. Therefore, as in Gerbeau et al. [13], we consider such a
background magnetic field given by Eq. (25). In this context, the dimensionless parameter b is a measure of the
relative intensity of the background field in terms of that induced by the imposed current~J 0. We have further
considered an equal depth of aluminum and bath. In order to be able to compute the flow, we had to reduce
the electrical conductivity jump by taking Rmel = 10�3 in the electrolytic bath. We believe that this approx-
imation has no important physical drawback, since the Rmel� Rmal < 1 property is preserved. Following
Sneyd and Wang [8], the vertical displacement of the interface f(x, y) is expanded into a cosine series:
fðx; yÞ ¼
X
m;n

amnðtÞ cos
mpx
Lx

cos
npy
Ly

.

We now focus on the results from our simulations in a square cell of aspect ratio 3:3:1. At time t = 0, all velocity
components are set to zero. A perturbation f(x, y) of the interface is set to a10 = �0.025L0, i.e. the first x-mode
is perturbed by a factor of 2.5%. All other coefficients amn are set to zero. As expected, the amplitude of the first
y-mode, which is the most strongly coupled mode to a10, grows during the first oscillations. Later, when the flow
has reached a steady-state, a10 and a01 dominate, while all other coefficients have remained two orders of mag-
nitude below. Coefficients a10 and a01 are plotted in Fig. 12, for two different magnitudes of Bbg. The roll being a
rotating wave, the trajectory through phase space becomes perfectly round after a dozen of oscillations in the
stable case, i.e. a10 and a01 are of same amplitude but the two phases are shifted by p/2, the modes being in res-
onance together. Our results are qualitatively the same as in Gerbeau et al. [13] in that the roll appears, is stable
for weak vertical magnetic field, and unstable for a strong one. However, in their study, some parameters were
slightly different than ours, with corresponding non-dimensional numbers Re = 1000, Fr = 1.2, Rmal = 1 and
Rmel = 10�4. It is to be noted that even though our method does not allow for the 104 conductivity ratio as
opposed to the ALE approach [13], we still achieve a high precision tracking of the interface.

In another simulation, we used a rectangular cell of aspect ratio 12:4:1, a background magnetic field of
Bbg = 3.27 mT, and initial conditions a30 = �0.025L0, all other cosine coefficients amn being null. The domi-
nant modes a30 and a01 are plotted in Fig. 13. As opposed to the square cell, there are also other modes,
weaker though non-negligible, namely a21 and a51 followed by a41. For this simulation, with a resolution of
nx · ny · nz = 120 · 40 · 20 = 96,000 grid points, the integration of one turnover time sU = sm, as defined in
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Table 1, takes 2 h in CPU time on a small AMD Athlon XP 1700+ machine, the biggest part of the time being
spent in the GMRES solver. Since the PETSc library is MPI-ready, our code could be readily parallelized.

6. Conclusion

We have combined a three-dimensional finite-volume method with a level set technique to simulate the
MHD instabilities in aluminum reduction cells. In our model, the magnetic and current fields are both split
into a constant part and a flow-dependent disturbance. Keeping ~r �~b ¼ 0 is achieved by writing the equations
and making the computations in terms of the magnetic vector potential ~a instead of the magnetic field itself.
The gauge condition ~r �~a ¼ 0 is enforced by using the same exact projection scheme on~a as on~v, both fields
being defined on staggered grids.

The code has been subject to four series of tests: (1) HD turbulence and (2) HD interfacial gravity waves;
then (3) MHD growth of anisotropy in a single fluid, and finally (4) the metal pad roll. The purpose of this
fourfold testing was to verify that the code behaves correctly in single-fluid HD and MHD regime, as well as in
two-fluid HD conditions, before considering two-fluid MHD. It is found in test 1 that the kinetic energy
spectra, the turbulent Reynolds number and the integral scale of turbulence converge at sufficiently high
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resolution. In test 2, the computed gravitational wave frequencies are in very good agreement with the ones
predicted by the linear shallow-layers theory. Test 3 showed that momentum diffuses along the magnetic field
lines during the time scale estimated from low-Rm theory. With the last test (4), the code has proven to be able
to successfully reproduce a well-known regime of flow in aluminum reduction cells, namely the metal pad roll.
We believe that our method can be used with a good level of confidence to investigate MHD instabilities in
two-fluid flows.
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